Geophysics class algebra/trig/SN Evaluation worksheet

Name:

- 1. Draw a real number line and shade the following interval(s).
 - (a) $[-2,\infty)$ (c) $[-\pi/2,-1)$ (e) $[0,2\pi]$ (b) (-4,1/2)(d) $(-\infty,732)$ (f) $(-\infty,\infty)$
- 2. Simplify

(a)
$$\left(\frac{4a^4}{b^5}\right)^2 \frac{b^3}{a^7}$$

(b) $\frac{1}{t+2} + \frac{t}{t-1} - \frac{3t}{t^2+t-2}$
(c) $\frac{\frac{1}{y} + \frac{y}{y-1}}{\frac{2}{y-1} - \frac{1}{y}}$
(d) $3(x+5)^{\frac{-1}{4}}(x-2)^2 + (x+5)^{\frac{3}{4}}(x-2)$

- 3. Solve the following inequalities in terms of intervals and draw the solution set on a real number line:
 - (a) $1 7x \le 3 + 4x$ (b) |-5x + 3| < 4(c) $x^3 - x^2 < 0$ (d) 0 < |x - 5| < 1/2
- 4. Draw a single coordinate plane and plot the following points
 - (a) (3,4)(b) $(-\pi,1)$ (c) $(\pi,-1)$ (d) (-1/2,-1/4)
- 5. State the formula for the distance between two points in the plane. Find the distance between the points (2, 5) and (4, -7).
- 6. Find the equation of the line through the following points.
 - (a) (0,3) and (2,1) (b) (-1,-1) and (1/2,3)
- 7. State any definition of a function y = f(x). State the definition of the domain of f(x).
- 8. State the Vertical Line Test (VLT).
- 9. State the definition of what it means for a function f to be increasing on an interval I. Repeat for decreasing.
- 10. Sketch the following graphs (at most 2 graphs in a coordinate plane, please):
 - (a) y = x(b) $f(x) = x^2$ (c) $g(x) = x^3$ (d) $y = \frac{1}{x}$ (e) y = |x|(f) $x^2 + y^2 = 4$ (g) y = -x/2 + 4(h) $\{(x, y) \mid x^2 + y^2 \le 3\}$ (i) $y = (x+3)^2 - 1$

11. Let $f(x) = 3 - 4^x + x^2 - 5x + \frac{1}{3x} - \sqrt{x}$. Find the following, if possible:

(a) f(1)(c) f(-1)(e) f(a+h)(b) f(0)(d) f(a)(f) f(x+h)

12. Let $f(x) = \sqrt{x}$. Let g(x) = x - 19. Find $(f \circ g)(x)$, then state its domain.

13. Let
$$f(x) = 1 - x^9$$
, $g(x) = \frac{1}{x}$, and $h(x) = \cos x$. Find the following compositions:
(a) $(f \circ g)(x)$ (b) $(h \circ f)(x)$ (c) $(f \circ g \circ h)(x)$

14. Graph
$$f(x) = \begin{cases} \frac{x}{2} + 4, & \text{if } x < -2; \\ x^2, & \text{if } -2 \le x < 1; \\ x^3 - 9, & \text{if } x \ge 2. \end{cases}$$

Trigonometry

15. Recall that angles can be measured in radians or degrees. (We will stick to radians.) Recall that $\frac{\text{rad}}{\pi} = \frac{\text{deg}}{180^{\circ}}$. Fill in the blank with either the radian or degree measure (should be clear from context).

(a)
$$_= 0^{\circ}$$
.
(b) $3\pi/8 = _$.
(c) $_= 275^{\circ}$.
(d) $\pi/2 = _$.

- 16. What are the "important" angles for trigonometry?
- 17. Draw a unit circle and label the "important" angles.
- 18. On the unit circle, if θ is an angle, which coordinate of the intersection of the terminal side of the angle with the unit circle is the $\sin \theta$? the $\cos \theta$? What's $\tan \theta$?
- 19. In what quadrants is $\sin \theta$ positive? Repeat for $\cos \theta$, $\tan \theta$.
- 20. State the definitions of $\csc \theta$, $\sec \theta$, $\cot \theta$.
- 21. State the right triangle definitions of the trigonometric functions. What does "SOH CAH TOA" mean?
- 22. Make a table in which you list the "important" angles and their values under the sine, cosine, and tangent functions.
- 23. Find the sine and cosine of $-\frac{7\pi}{6}$.
- 24. State the Pythagorean identities. (there are 3 of them)
- 25. Is $\sin \theta$ even/odd? Is $\cos \theta$ even/odd? (What do even and odd mean?)
- 26. What is the period of $\sin \theta$? $\cos \theta$? $\tan \theta$?
- 27. Graph two full period of $\sin \theta$, $\cos \theta$, $\tan \theta$. (on separate graphs)
- 28. If $\sin \beta = -1/3$ and $\pi < x < 3\pi/2$, find the remaining trigonometric ratios (functions).
- 29. If $\cot \beta = 3$ and $\pi < x < 2\pi$, find the remaining trigonometric ratios (functions).
- 30. Prove the following identities:

(a)
$$\sin\theta \cot\theta = \cos\theta$$

(b) $\sec y - \cos y = \tan y \sin y$
(c) $\cos\left(\frac{\pi}{2} - x\right) = \sin x$
(d) $\sin^2 x - \sin^2 y = \sin(x+y)\sin(x-y)$

/ _

- 31. If a right triangle has a hypotenuse of length 4 in, and an angle of $\pi/3$ radians, find the length of the opposite side of the angle. Use trig functions.
- 32. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.
 - (a) $2\cos x 1 = 0$ (b) $4\sin^2 x = 1$ (c) $\sin 2x = \cos x$ (d) $\sin x = \tan x$